Step of Proof: p-conditional-to-p-first
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
p-conditional-to-p-first
:
1.
A
: Type
2.
B
: Type
3.
f
:
A
(
B
+ Top)
4.
g
:
A
(
B
+ Top)
5.
x
:
A
[
f
?
g
](
x
) = p-first([
f
;
g
])(
x
)
latex
by ((RepUR ``p-conditional p-first can-apply`` 0)
CollapseTHEN (((((GenConclAtAddr [2;1;1])
C
CollapseTHENA (Auto
))
)
CollapseTHEN (((D (-2)
)
CollapseTHEN (((Reduce 0)
CollapseTHEN (
C
Auto
))
))
))
))
latex
C
.
Definitions
[
f
?
g
]
,
p-first(
L
)
,
can-apply(
f
;
x
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
t
T
,
left
+
right
,
inr
x
,
Top
,
x
:
A
B
(
x
)
,
Type
,
s
=
t
,
f
(
a
)
Lemmas
top
wf
origin